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Enhancing agricultural productivity is vital to lifting global liv-
ing standards and advancing sustainable food production in 
the face of escalating challenges to agriculture and the environ-

ment1–7. Investments in agricultural research have boosted agricul-
tural productivity, but this growth in productivity has been distributed 
unequally across the world8–10, and there are signs that it is slowing in 
certain regions11–15. At the same time, human activities during the last 
century and a half have caused global temperatures to rise by more 
than 1 °C above their pre-industrial values16. This increase affects the 
global weather patterns that are essential to agriculture17,18. However, 
the impacts of this ACC on the agricultural sector have not yet been 
quantified, as most research has focused on future impacts19,20.

Research to date on the historical impact of ACC focuses over-
whelmingly on yields of major cereal crops21–23 or on total gross 
domestic product24. However, recent studies in this area are of limited 
value for assessing overall agricultural productivity for the following 
reasons: (i) cereal crops represent only about 20% of agriculture’s 
global net production value (Extended Data Fig. 1), (ii) variations 
in measures such as yield, could deviate from changes in overall pro-
ductivity if farmers also adjust inputs in response to weather25–27 and 
(iii) growth and levels of total and agricultural GDP diverge consid-
erably in most countries28–30, and thus impacts of climate change on 
total GDP could deviate considerably from agricultural impacts31,32. 
There is much need for research on agricultural climate impacts 
beyond the effects on yields of the major staple crops33.

We quantify the impact of ACC on global agricultural productiv-
ity since 1961 (ref. 34). Instead of focusing on crop yield or agricul-
tural output, we rely on a measure of agricultural TFP. TFP measures 
aggregate output per unit of measured aggregate input35–38. TFP thus 
captures interactions between output and input adjustments that 
eluded earlier research. Here we rely on official TFP statistics, for 
which agricultural output includes crops and livestock, while inputs 
encompass labour, land, physical capital and materials12. However, 
these TFP statistics do not incorporate the effect of weather.

Consider the production relation Yit ¼ ef ðZitÞAitXitUit
I

, where Yit 
is aggregate agricultural output, ef ðZitÞ

I
 is the effect of weather Zit, Ait 

measures technological knowledge and Xit and Uit are the observed 

and unobserved aggregate inputs, respectively. The subscripts refer 
to individual countries (i) and year (t). The percentage change in 
TFP is approximated as

Δ ln TFPit  Δ ln Yitð Þ � Δ ln Xitð Þ ¼ Δ lnAit þ Δf Zitð Þ þ Δ lnUit ;

where Δ denotes change. TFP growth reflects technological improve-
ments embodied in Δln Ait but also the unmeasured effects of ran-
dom year-to-year weather changes Δf(Zit) and unobserved input 
adjustments Δln Uit. While this aggregate representation may con-
ceal fine-scale production processes that are important to practitio-
ners in the field, it helps provide a much-needed macro-economic 
picture about the global agricultural economy.

We ground this conceptual framework empirically by estimat-
ing an econometric model linking country-level TFP growth with 
weather change. Our model characterizes f as a quadratic func-
tion of average temperature (T) and total precipitation (P) over the 
5-month period centred around the greenest month of the year of 
each country or ‘green season’ (Methods):

Δ ln TFPit ¼ αi þ θt þ β1ΔTit þ β2ΔT
2
it þ β3ΔPit þ β4ΔP

2
it þ ϵit :

Country-fixed effect αi controls for average country TFP growth 
rates, and year-fixed effect θt for global shocks common to all 
nations. Conceptually, these parameters seek to control for tech-
nological change embodied in Δln Ait. Thus the β coefficients are 
estimated via the within-country and within-year variation of TFP 
growth and year-to-year weather changes. The inclusion of squared 
terms ΔðT2

itÞ
I

 and ΔðP2
itÞ

I
 allows the effect of changes in weather to 

vary with baseline levels of T or P. Unobserved changes in inputs 
that are not absorbed by αi or θt and measurement errors in the 
TFP data are captured in the error term ϵit

I
. Note that measurement 

error in the TFP data (Methods) that remain uncorrelated with 
year-to-year changes in weather do not introduce bias. We account 
for the uncertainty in the estimated parameters with a block boot-
strap where we sample observations with replacement 500 times  
by year and region. We later consider more than 200 systematic 
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variations of this model. For instance, we explore whether estimat-
ing separate response functions for various sub-regions of the world 
affects our results.

We summarize the key source data in Fig. 1. Figure 1a shows that 
average agricultural TFP has more than doubled since 1961 but that 
there is wide cross-country variation. Figure 1b shows that there is 
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Fig. 1 | Recent trends in agricultural productivity and climate. a, Country-level growth in agricultural TFP over 1961–2015. Grey lines indicate observed TFP 
level trajectories for all countries in the sample. Coloured lines correspond to average TFP level trajectories for countries with varying average TFP growth 
rates. b, Distribution of first differences in the log of country-level TFP. The boxes represent the first three quartiles (Q1, Q2 and Q3). Whiskers extend to 
1.5 times the interquartile range (IQR = Q3 – Q1). Observations falling beyond 1.5 IQR are represented with small circles. c, Map representing the annual 
average growth rate in agricultural TFP over 1961–2015. d,e, Evolution of global average annual temperature (d) and annual precipitation (e) of the Global 
Meteorological Forcing Dataset (GMFD) observations (circles). The golden band extends to the range of modelled variables from CMIP6 (seven GCMs). 
Simple averages of country-level variables are shown, thus small countries are over-represented.
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a substantial range of variation in Δln TFPit across countries for any 
given year. We also observe that TFP has grown much more slowly 
in certain countries, particularly in Sub-Saharan Africa (Fig. 1c). 
Figure 1d shows how observed annual country-level average tem-
peratures (in circles) fall closer within the range of counterfactual 

weather trajectories with ACC (gold band) than without ACC (grey 
band). Figure 1e shows analogous information for precipitation 
without any discernible pattern.

We find a robust relationship between agricultural TFP  
growth and weather changes (Fig. 2 and Supplementary Table 1). 
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Fig. 2 | Response of agricultural productivity to weather. a,b, Response function of TFP growth to changes in green-season average T (a) and P (b). 
Response functions are centred vertically so that the exposure-weighted marginal effect is zero. The coloured bands represent 90% and 95% confidence 
bands based on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample 
period 1962–2015. The average green-season T is indicated for a select number of large countries. c–f, Results of placebo checks whereby TFP and weather 
data are randomly mismatched or reshuffled by years (c,e) or country (d,f) where the distribution represents the linear and quadratic T (c,d) or P (e,f) 
coefficients based on 10,000 reshuffled datasets.
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The temperature response function is roughly linear and down-
ward sloping (Fig. 2a), indicating that warmer temperatures over 
the green season are detrimental to TFP growth. We conduct two 
placebo checks that suggest this relationship is unlikely to arise by 
chance. These checks are based on the idea that incorrectly match-
ing TFP growth and weather changes, and re-estimating, should 
yield results suggesting no or insignificant effects of weather on 
TFP. We first estimate models based on 10,000 ‘reshuffled’ datas-
ets that mismatch the year variable of the TFP growth and weather 
change data. The sample estimate (Fig. 2a) falls outside the resulting 
distribution of spurious ‘reshuffled estimates’ (Fig. 2c). In a second 
check, we mismatch the country variable of the TFP growth and 
weather change data, with similar results (Fig. 2d). The precipita-
tion response function is non-linear and peaks at around 500 mm 
over the green season (Fig. 2b). We demonstrate that this relation-
ship is not likely spurious with the same placebo checks shown in 
Fig. 2e,f. We also find that the shape of the response functions is 
not driven by either hot or cold countries (Supplementary Figs. 1 
and 2).

A critical question for climate change adaptation is whether agri-
culture is becoming more or less sensitive to climatic extremes. This 
would be reflected empirically as changes over time in the response 
functions shown in Fig. 2. We estimate a model based on the first 
(1962–1988) and second (1989–2015) halves of the sample and 
find that the temperature response function is noticeably steeper 
for the latter half (Supplementary Figs. 4 and 5). This indicates that 
higher temperatures have become more damaging. We formally 
confirm this by testing whether the temperature coefficient has 
changed between these two periods in a model with a linear speci-
fication for temperature (P = 0.035). We also find that the change in 
the temperature response function over time is not driven by iso-
lated changes in outlying countries in the temperature distribution 
(Supplementary Figs. 6–9). Note that, because the response func-
tions are roughly flat for models based on early, 1962–1988 data, 
the coefficients do not fall outside the distribution of ‘reshuffled’ 
estimates in Supplementary Figs. 4b,c, 6b,c and 8b,c. This mirrors 
recent findings in US agriculture39,40.

We find no evidence that weather has a persistent effect on TFP 
growth. Our baseline specification only considers contemporane-
ous weather effects. But a weather shock could conceivably affect 
TFP growth in future years, for example, if growth is faster following 
a year with bad weather. This would result in cumulative weather 
events affecting TFP growth. By introducing lags for weather in 
prior years, we cannot reject the hypothesis that the cumulative 
effect of changes in weather conditions up to 10 years in the past 
have no effect on TFP growth (Supplementary Table 2). But reject-
ing this hypothesis may be challenging with aggregate data.

We subsequently link our econometric estimates with counter-
factual weather trajectories from climate experiments with and with-
out ACC to derive the cumulative impact of ACC for each country 
since 1961. We obtain the counterfactual weather trajectories from 
the Coupled Model Intercomparison Project Phase 6 (CMIP6). This 
approach combines both the statistical uncertainty from the econo-
metric model regarding the climate–agriculture relationship and 
the climate uncertainty from the CMIP6 ensemble regarding the 
effect of human emissions on the climate system (Methods).

The cumulative impact of ACC on global agricultural TFP 
growth over the 1961–2020 period is about −20.8% with a 90% con-
fidence interval between −39.1% and −10.1% (Fig. 3a). Figure 3b 
shows this finding in levels by combining the counterfactual cumu-
lative impacts of ACC on global TFP growth with the observed 
(1961–2015) and projected (2016–2020) global TFP level trajectory. 
This illustrates how much higher global TFP would have been with-
out ACC. Specifically, we find that the global TFP level projected to 
be reached in 2020 in our world with ACC would have been reached 
in 2013 in a world without ACC, with a 90% confidence interval 

between 2007 and 2016. That is, the impact of ACC represents a loss 
of the past 7 years of productivity growth.

Our baseline global finding of the impact of ACC on global agri-
cultural productivity is robust to a wide range of specifications of 
the econometric model. Figure 4 summarizes global estimates for 
the baseline and a subset of alternative models (96). Extended Data 
Fig. 10 summarizes global estimates for an even wider range of 
specifications (298). The baseline model is shown in blue in Fig. 4 
and corresponds to the estimate shown in Fig. 3a. Notice that using 
minimum (Tmin) and maximum (Tmax) temperature as alternative 
temperature variables does not substantially change our baseline 
estimate. Extended Data Fig. 10 shows that excluding precipita-
tion also does not change results substantially. In addition, using 
a cubic functional form to relax the symmetry of our baseline qua-
dratic specification does not alter our baseline result. We also con-
sider regressions with observations weighted by revenue and find 
those results to be systematically more pessimistic than our baseline 
model using equal weights. Aggregating weather data to country 
level on the basis of areas covered only by cropland or both crop-
land and pasture has little effect on our findings. We also consider 
models with weather variables aggregated over the entire calendar 
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year and find that those models fit less well and point to noticeably 
smaller damage. We also consider a model based on two seasons, 
a 3-month ‘green’ season and a 3-month ‘brown’ (or dry) season 
(Methods). Results shown in Extended Data Fig. 10 indicate that 
this does not substantially improve model fit or affect impact esti-
mates in a meaningful way. Finally, our baseline model imposes a 
single response function for the whole world. But allowing sepa-
rate response functions for three equally sized latitudinal groups of 
countries does not alter our findings. Overall, the 288 models that 
do not exclude observations point to an average mean impact of 
−16.9% with a standard deviation of 5.9% (indicated with a hori-
zontal red line and band in Extended Data Fig. 10).

The exclusion of certain countries does not substantially affect 
our baseline estimate, but restricting the analysis to certain tempo-
ral subsamples does. A potential concern is that certain countries 
may overinfluence our estimates and thus drive our findings. But 
excluding certain large countries such as China, the United States, 
India or Brazil, the 10% coldest or hottest countries or the 10% or 
20% smallest countries (by average agricultural revenue) does not 
substantially alter our baseline finding (Extended Data Fig. 10). 
However, basing our analysis on the latter part of the sample (1989–
2015) points to even larger damage than our baseline estimate, on 
the order of −30% (Extended Data Fig. 10). This reflects our find-
ing that the response function is changing over time and suggests 
that global agriculture is growing increasingly sensitive to ongoing 
climate change.

Our global results conceal sizeable regional and cross-country 
disparities. Figure 5 shows that the cumulative impact of ACC 
since 1961 is greater for warm regions such as Africa (−34.0%), the 
Near East and North Africa (−30.0%) and Latin American and the 

Caribbean (−25.9%) than for cooler regions such as North America 
(−12.5%) and Europe and Central Asia (−7.1%) (Supplementary 
Table 3). Importantly, these regional impacts are constructed by 
weighting econometric models based on how well they fit the data, 
so results reflect the econometric model uncertainty (Methods). 
The large negative impacts for Africa seem particularly worrisome 
given the large portion of the population employed in agriculture. 
Overall, these findings are consistent with some localized slowdowns 
in agricultural productivity growth11–15, but also with studies analys-
ing economy-wide ACC impacts that exacerbate inequality between 
poor and rich countries24,41. The most affected areas include regions 
with low agricultural productivity such as Sub-Saharan Africa42,43.

Finally, we find that ignoring input responses, by analysing out-
put rather than TFP, makes global impacts of ACC appear more 
severe. The temperature response function is steeper for output 
than for TFP (Supplementary Fig. 1), suggesting that farmers reduce 
aggregate input quantity in response to detrimental weather con-
ditions. That is, weather effects on output reflect direct effects on 
production, but also indirect effects via weather-induced reductions 
in inputs. Such indirect input effects are not captured by the TFP 
model. Ignoring confounding input adjustments, Supplementary 
Fig. 2 indicates that ACC would have reduced output by about 
27.6% with a 90% confidence interval between −48.3% and −14.3%. 
This is noticeably higher than the 20.8% reduction based on TFP.

Our estimates should not be interpreted as the effect of a world 
without fossil fuels on global agricultural production. Agriculture 
has benefitted tremendously from agricultural research and 
carbon-intensive inputs that would not have been as available with-
out fossil fuels. The counterfactual in our study only removes the 
effect that fossil fuels and other anthropogenic influences have on 
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the climate system. For instance, our estimates do not remove the 
direct effect that rising CO2 concentrations have on agricultural pro-
duction or the presence of agricultural research or carbon-intensive 
inputs. In addition, the reader may be rightfully concerned about 
measurement error of our TFP metric. TFP estimates are notori-
ously difficult to construct and require considerable background 
work, sometimes using imperfect data sources. However, as long 
as the measurement error remains uncorrelated with year-to-year 
changes in TFP growth, which seems plausible, such errors do 
not bias our econometric estimates but simply render them more 
imprecise. Moreover, the TFP metric we rely upon likely mismea-
sures certain inputs, such as irrigation water use. Our own analysis 
shows that ignoring all measured inputs overstates ACC impacts, 
so the present analysis is a first step while more detailed interna-
tional TFP statistics are produced. In conclusion, our study suggests 
that ACC is increasingly reducing agricultural output as we drift 
away from a climate system without human influences, cumulat-
ing into a detectable and sizeable impact as of 2020. Given recent 
localized productivity slowdowns11–15, the long lags in agricultural 
research and the rapid pace of ACC, our findings raise the question 
of whether current levels of investments in agricultural research are 
sufficient to sustain twentieth-century rates of productivity growth 
in the twenty-first century.
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Methods
Data sources and data processing. We obtain agricultural data from the 
United States Department of Agriculture (USDA) Economic Research Service 
(ERS) International Agricultural TFP dataset44. This dataset provides the most 
comprehensive set of international TFP estimates for the agricultural sector. 
The dataset provides country-level TFP indices (in levels) for 172 countries over 
the 1961–2015 period. The regression dataset has 9,255 observations with 172 
countries and 54 years (1962–2015; note that one year is lost because of first 
differencing to compute growth rates). The dataset is balanced but for one nation, 
Palestine, for which we only have complete data from 1995. Note that some recent 
smaller nations were aggregated to their former larger countries to extend the time 
span of the dataset (for example, Czechoslovakia, Yugoslavia, Ethiopia, Sudan, etc.).

TFP levels, annual growth rates and average growth rates are shown in Fig. 
1a–c. The TFP growth rate for country i and year t is constructed by the USDA as

Δ ln TFPit ¼
X

j

Ritj lnΔYitj �
X

k

Sitk lnΔXitk;

where Ritj is the revenue share of the jth output Yitj and Sitk is the cost share of the 
kth input Xitk. As indicated by the USDA, TFP growth is the value-share-weighted 
difference between total output growth and total input growth. To avoid index 
number bias, the USDA adjusts weights Ritj and Sitk every decade. As indicated in 
ref. 45, this expression for TFP growth is derived from farmer profit-maximizing 
behaviour with an underlying Cobb–Douglas production function exhibiting 
constant returns to scale. Thus, changes in Ritj and Sitk every decade essentially 
reflect changes in output elasticities of inputs in the underlying production 
function over time within each country.

Outputs include crop and livestock commodities aggregated based on 
a common set of international prices derived by the Food and Agriculture 
Organization (FAO). Inputs include farm labour, agricultural land (quality 
adjusted), capital inputs (including farm machinery and livestock) and 
intermediate inputs (inorganic fertilizer and animal feed) which are mostly 
obtained from the FAO. Thus changes in inventory in livestock herd size are 
taken into account. See ref. 45 for more details. Note that, although the data are 
constructed in terms of TFP growth rates, the data are transformed and reported 
in levels on the USDA website. Geographical delimitations in this study follow as 
close as possible FAO region definitions (Supplementary Fig. 3). Note that the TFP 
metric we rely upon likely mismeasures certain inputs, such as irrigation water use. 
As discussed in ref. 45, irrigation is accounted for in the land input through a quality 
adjustment of land equipped for irrigation. Thus changes in irrigation intensity 
remain unaccounted for. However, estimates of weather-driven variability in 
global irrigation withdrawals remain modest at a global scale (~10%)46. We obtain 
regional or global TFP growth rates by computing revenue-weighted averages 
of country-level TFP growth rates. We use a constant revenue weight based on 
average revenue over the 1961–2015 period to simplify our interpretations. Note 
this approach differs slightly from the USDA approach, which consists of deriving 
regional or global TFP growth rates from aggregate regional or global outputs and 
inputs (using revenue and cost shares that vary by decade). Results remain fairly 
similar. For instance, our approach indicates a global TFP increase of 76% over 
1961–2015 whereas the USDA indicates a 71% rise.

We obtain the historical weather data from the Global Meteorological 
Forcing Dataset (GMFD) for land surface modelling developed by the Terrestrial 
Hydrology Research Group at Princeton University47. The GMFD provides data on 
daily minimum and maximum temperature and total precipitation over 1948–2016 
with a 0.25° spatial resolution (~28 km at the Equator). Following standard 
practice in the literature, we aggregate these variables to the monthly level and 
then spatially aggregate the grids to the country level based on either cropland or 
cropland and pasture weights. We obtain these weights by resampling the 10-km 
gridded land cover data in ref. 48 to the GMFD grid using bilinear interpolation 
(Supplementary Fig. 4). Although weighting weather data by production value may 
seem desirable, we find that (1) adopting alternative weighting schemes makes 
little practical difference, and (2) constructing a globally consistent set of grid-level 
production value weights would be prohibitive. We show the annual evolution of 
the country-level average temperature and percentage change in total precipitation 
for the 1961–2015 period in Fig. 1d,e.

We obtain the counterfactual monthly weather trajectories for average 
temperature and total precipitation for 1961–2020 from three sets of simulations in 
CMIP6. The ‘hist-nat’ experiment (1961–2020) simulates the influence of natural 
forcing alone on the climate system. The ‘historical’ experiment (1961–2014) 
simulates the influence of both human and natural forcings on the climate system. 
As stipulated by CMIP6, we complement this experiment with data for 2015–2020 
from the SSP2–4.5 experiment. We rely on seven general circulation models 
(GCMs) (Supplementary Table 4).

To aggregate these modelled weather trajectories to the country level using 
the same approach as above, we first downscale these data from their native GCM 
grid to the GMFD grid using the bias-corrected spatial disaggregation (BCSD) 
approach49. BCSD corrects the bias of the modelled climate data and increases the 
spatial resolution with the ultimate goal of having a product of higher resolution 
that conserves the statistics of the global climate scenarios. The BCSD approach 

is performed in two steps. In the first step, we create a bias-corrected (BC) dataset 
by performing a quantile mapping to correct the bias50,51, which ref. 52 calls a 
‘transformation’. In the quantile mapping, we transform the GCM time series field 
to match the quantile distribution of the observed GMFD weather dataset, QGCM 
→ QOBS, using a common period for the transformation function (1961–2014). 
Because the transformation is done at every grid cell of the GCM, the observed 
GMFD dataset was aggregated to match the coarser GCM resolution. The approach 
was applied to both temperature and precipitation. In the second step, we increased 
the spatial resolution of the BC data by applying the spatial disaggregation (SD) 
approach. In the SD approach, we first removed the monthly observed climatology 
from the coarse resolution BC data, ΔF ¼ F � CLIMCOARSE

I
. We then convert 

the anomaly to a high resolution by linear interpolation, ΔF ! ΔFHIGH
I

. Finally, 
we added the climatology with high resolution, FHIGH ¼ ΔFHIGH þ CLIMHIGH

I
. 

Here, the anomaly calculation (ΔF) is only valid for temperature. For 
precipitation, the anomaly is computed using a ratio, ΔF ¼ F=CLIMCOARSE

I
 with 

FHIGH ¼ ΔFHIGH ´CLIMHIGH
I

.
The baseline econometric model relies on weather variables aggregated over 

the ‘green season’, a 5-month period centred around the greenest month of year of 
each country based on normalized difference vegetation index (NDVI) climatology 
data53. The motivation behind the green season is to avoid incorporating periods 
of the year with relatively little vegetation growth which are critical both for crop 
and livestock production. We also consider a series of models with two seasons, a 
3-month ‘green’ season and a 3-month ‘brown’ (dry) season, each centred around the 
highest and lowest NDVI value, respectively. The NDVI data is the third generation 
of the National Aeronautics and Space Administration/Goddard Space Flight Center 
Global Inventory Modeling and Mapping Studies NDVI dataset for 1981–2015. We 
first temporally aggregate the data to bi-weekly climatologies. We then smooth the 
climatology series within the year based on a 14-week moving window. We then 
identify the ‘greenest’ month based on the month that includes the highest NDVI 
level of the year for each grid cell. The spatial distribution of the ‘greenest’ month for 
each grid cell is shown in Supplementary Fig. 5. To obtain a country-level value, we 
first resample land cover weights to match that of the NDVI data. We then compute 
for each country the most frequent ‘greenest’ and ‘least green’ months based on 
either cropland or cropland and pasture frequency weights. These country-level 
aggregations are shown in Supplementary Fig. 5. For two small island nations (Fiji 
and Polynesia) there are no NDVI data. We therefore assign the greenest and least 
green months to match that of the neighbouring island nation of Vanuatu.

Deriving the response function. To help map our conceptual framework to the 
USDA TFP estimates, we consider the following relationship between aggregate 
output, aggregate input, weather and technological knowledge Yit ¼ ef ðZit ÞAitXitUit

I
, 

where Yit is aggregate agricultural output in country i and year t, ef ðZit Þ

I
 is the effect 

of weather Zit, Ait measures current technological knowledge and Xit and Uit are 
observed and unobserved aggregate inputs, respectively. By definition, TFP for 
country i at time t is Yit/Xit, so that the percentage change in TFP for country i at 
time t is approximated as

Δ ln TFPit  Δ ln Yitð Þ � Δ ln Xitð Þ ¼ Δ lnAit þ Δf Zitð Þ þ Δ lnUit :

Empirically, our econometric models seek to control for Δln Ait through 
country and year fixed effects (αi and θt, respectively) and model Δf(Zit) in 
various ways. Because the model is specified in growth terms, the inclusion of 
a country-specific dummy variable αi is analogous to controlling for a linear 
country-specific time trend in ln TFP. Unobserved inputs that are not absorbed 
by the fixed effects are captured in the error term ϵit

I
. This error term also captures 

measurement errors in the TFP metric, which includes changes in irrigation water 
use not fully captured by changes in irrigated area. Perhaps with the exception 
of water withdrawals, measurement errors in the TFP data are unlikely to be 
correlated with year-to-year weather changes, which does not bias our results. Our 
baseline model regresses Δln TFPit on first differences of green-season average 
temperature and precipitation:

Δ ln TFPit ¼ β1ΔTit þ β2ΔT
2
it þ β3ΔPit þ β4ΔP

2
it þ αi þ θt þ ϵit :

To capture the statistical uncertainty of the regression model, we conduct a 
block bootstrap estimation where we sample observations by year–region with 
replacement. While there is serial dependence in TFP levels, previous work has 
shown there is no serial dependence in growth Δln TFPit (for example, refs. 14,37). 
We thus focused on accounting for contemporaneous regional dependence. 
Regions correspond to the seven FAO regions shown in Supplementary Fig. 3. 
We show the response function with a 90% bootstrapped confidence band for 
temperature and precipitation in Fig. 2a,b. We show regression coefficients for the 
baseline model in Supplementary Table 1. Weather parameters β are subsequently 
used in a simulation to derive the effect of ACC on global agricultural TFP. 
Importantly, note that measurement error in Δln TFPit would need to be correlated 
with ΔTit and/or ΔPit to induce any form of bias in the estimation of β̂. In addition, 
classical measurement error in ΔTit and/or ΔPit would induce attenuation bias, 
reducing the magnitude of our findings.

The placebo checks shown in Fig. 2c–f evaluate whether the estimated 
relationship is spurious. The idea is to evaluate the chances that the result is spurious 
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by contrasting the estimated coefficients in our sample with a distribution of 
coefficients from ‘reshuffled’ datasets where we should, on average, expect no effect 
of weather. We perform 10,000 regressions based on datasets that are mismatched 
by year and by country. In all cases the estimated coefficients fall clearly outside the 
distribution of ‘reshuffled’ estimates, in support of our baseline model.

Robustness checks. A crucial concern in applied econometric analysis is that 
baseline models proposed by researchers may not be robust to even small 
variations in model specification or the underlying data. We conduct a systematic 
exploration spanning 296 variations of the econometric model to assess the 
robustness of our baseline finding (Extended Data Fig. 10). The upper part of 
the figure shows the cumulative impact of ACC on global agricultural TFP since 
1961 for each one of these model variations. Each point and associated confidence 
bands corresponds to a particular model. The lower part of the figure shows 
the characteristics of each model in a dotted table. The baseline model, which 
corresponds to the impact estimate shown on the right in Fig. 3a, is highlighted in 
blue. Note that Fig. 4 shows a subset of the models in the main text.

We consider all possible combinations of models along the following 
dimensions: (1) relies on either Tmax, Tmin or Tmean, (2) includes or excludes 
precipitation, (3) adopts a quadratic or cubic functional form for all weather 
variables, (4) relies on equal or revenue regression weights, (5) relies on 
weather data aggregated over cropland or cropland and pasture, (6) relies on 
the calendar year, the ‘green season’ (5 months centred around the greenest 
month) for aggregating weather conditions or two 3-month long ‘green’ and 
‘brown’ seasons and (7) relies on a single global response function or on separate 
response functions for three equally sized latitudinal regions. This corresponds 
to 3 × 2 × 2 × 2 × 2 × 3 × 2 = 288 variations of the model which are codified in the 
bottom part of Extended Data Fig. 10. For instance, the dotted table in Extended 
Data Fig. 10 indicates that the baseline model (shown in blue) adopts Tmean as 
the temperature variable, includes precipitation in the specification, assumes 
a quadratic response function, relies on equal regression weights, is based on 
regression data aggregated over cropland areas, is based on weather variables 
constructed over the ‘green season’, assumes a singled ‘pooled’ global response 
function and does not exclude any observations.

We find that most of these variations have relatively little bearing on the baseline 
result presented in Fig. 3. The adoption of revenue regression weights and a ‘green 
season’ for weather aggregation represent the two most consequential modeling 
choices, pointing to slightly larger damage. Overall, we find that these models tend 
to better fit the data. Restricting weather variables to the greenest months may 
reduce measurement error of relevant weather conditions. Similarly, it is possible 
that smaller countries may have noisier agricultural data, so downweighting them in 
the regression or excluding them from the models improves model fit. In addition, 
note that alternative regression weights may signal unmodelled heterogeneity in the 
response function54, suggesting that smaller countries in our sample may appear 
slightly less sensitivity to weather than larger nations.

We also consider ten data restrictions including country exclusions (China, the 
United States, India, Brazil, coldest 10%, hottest 10% and smallest 10% and 20%) 
and temporal subsets (1962–1988 and 1989–2015) which are discussed in the main 
paper. We should emphasize that regressions are based on TFP growth rates, not 
levels. This is important in determining whether changes in regression coefficients 
between temporal subsets represent meaningful changes and not an artifact.

Measurement error. Measurement error affects all econometric analyses, and its 
consequences are well understood55. Here we characterize how it might affect our 
study. As stated above, our dependent variable Δln TFPit is possibly mismeasured. 
Measurement error in Δln TFPit that is uncorrelated with weather (classical 
measurement error) does not introduce bias in the estimation but renders our 
results less precise. Only measurement error in Δln TFPit that is correlated with 
weather fluctuations (non-classical measurement error) introduces bias. It seems 
unlikely that weather may affect the collection and reporting of output and input 
quantities. Thus, systematic differences across country in data reporting would not 
introduce bias.

However, omitted or mismeasured variable input adjustments in response 
to weather fluctuations could be problematic. The USDA ERS International 
Agricultural TFP dataset40 we rely upon accounts for irrigation via the amount of 
land equipped for irrigation41, not through water withdrawals directly. If farmers 
increase groundwater irrigation intensity in response to unfavourable conditions 
but such short-term increases in irrigation are overlooked, then unfavourable 
weather conditions would appear less damaging. Note that surface irrigation 
(for example, flood irrigation) may be procyclical with precipitation, so the 
overall relationship between irrigation intensity and weather fluctuations seems 
indeterminate.

Our analysis focusing on output (rather than TFP) suggests that ignoring 
input responses affects the estimation of the sensitivity to weather conditions 
(Supplementary Fig. 1). But the overall role of irrigation may be limited because 
weather-driven variability in global irrigation withdrawals remains modest at a 
global scale (~10%)44. Moreover, our main global finding remains stable when we 
estimated the response function separately for various regions of the world (Fig. 4, 
Supplementary Fig. 10).

Another potential concern is measurement error in our independent weather 
variables. Classical measurement error in independent variables, here ΔTit and 
ΔPit, cause attenuation bias (bias towards zero). This means that such errors would 
tend to ‘dilute’ our findings towards no results. On the other hand, measurement 
error that is correlated with weather fluctuations could bias our findings in either 
direction. However, comparisons of regression results across alternative datasets in 
other studies generally show minimal discrepancies.

Impact of ACC. We compute the impact of ACC on each country’s agricultural 
TFP growth by subtracting the cumulative impact of a weather trajectory with 
ACC for a given GCM from the cumulative impact of a weather trajectory without 
ACC for the same GCM. For a country i, the cumulative impact from 1962 to year 
t0 for a weather trajectory (with or without ACC) is computed as

Iit0 ¼
Xt0

t¼1962

Δ dln TFPit ¼ bβ1
X

t

ΔTit þ bβ2
X

t

ΔT2
it þ bβ3

X

t

ΔPit þ bβ4
X

t

ΔP2
it;

where the changes in weather variables (for example, ΔTit) are the differences 
between the sequence of seasonal weather conditions relative to the 23-year 
climatology centred around 1961 (1950–1972) for the scenario without ACC for 
that particular GCM. Thus, the cumulative impact of ACC is IwithACCit0 � Iwithout ACCit0

I
 

in year t0. We can compute this cumulative impact for all years between 1962 and 
2020 for a particular set of values of the β̂ coefficients and a GCM.

To reflect the joint statistical uncertainty from the econometric model and 
climate uncertainty arising from various GCMs in CMIP6, we compute cumulative 
impacts of ACC for 2,000 random pairs of bootstrapped coefficients β̂ and GCMs. 
Figure 3a shows the 2,000 trajectories of the cumulative impact of ACC for all years 
in 1962–2020, as well as the distribution of those impacts on 2020.

Figure 3b illustrates the impact of ACC by contrasting counterfactual TFP 
level trajectories with the observed TFP level trajectory. Specifically, we obtain 
a counterfactual TFP level trajectory Lit0

I
 for country i at year t0 by taking the 

exponential of the observed TFP level trajectory (mostly >0) minus each one of the 
2,000 counterfactual cumulative impacts of ACC (mostly <0):

Lit0 ¼ exp
Xt0

t¼1962
Δ ln TFPobserved

it|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Observed TFP level trajectory

� IwithACCit0 � Iwithout ACCCit0

 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Counterfactual cumulative impact of ACC

0
BB@

1
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These counterfactual TFP level trajectories are shown in grey with a blue line 
and band showing their mean and 90% confidence intervals, respectively. The red 
solid line shows the observed TFP level trajectory, exp

Pt0
t¼1962 Δln TFP

observed
it

� 

I
, 

for the 1962–2015 period. Because the TFP dataset extends only to 2015, we 
project the TFP trajectory for 2016–2020 (shown in a dashed red line) based on 
the average growth rate over the previous 10 years (2006–2015) for each country. 
Regional and global cumulative impacts of ACC are obtained by aggregating 
country-level cumulative impacts based on the fixed revenue weights for each 
country, and then converting these to levels after regional aggregation. TFP level 
trajectories are normalized to 100 in 1962.

When showing the regional and country-level impacts in Fig. 5, we account 
for the additional uncertainty introduced by the choice of econometric model 
specification. Specifically, the distribution of the cumulative ACC impacts for 
each FAO region shown in Fig. 5a is based on 10,000 draws from the universe 
of cumulative ACC impacts computed for all 288 model specifications that do 
not exclude data (2,000 ACC impact estimates for econometric model, so from 
a total of 576,000 estimates). These 10,000 draws are sampled by a probability 
proportional to the reciprocal of the out-of-sample MSE of the model. Thus, 
better-fitting models have greater representation in these impact distributions.

Data availability
Data and code necessary to fully reproduce results in this study are deposited in 
a permanent online repository at the Cornell Institute for Social and Economic 
Research (CISER): https://doi.org/10.6077/pfsd-0v93.

References
 44. International agricultural productivity. USDA ERS https://www.ers.usda.gov/

data-products/international-agricultural-productivity/ (2019).
 45. Fuglie, K. Accounting for growth in global agriculture. Bio-based Appl. Econ. 

4, 221–254 (2015).
 46. Wisser, D. et al. Global irrigation water demand: Variability and uncertainties 

arising from agricultural and climate data sets. Geophys. Res. Lett. 35, L24408 
(2008).

 47. Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-yr high-resolution 
global dataset of meteorological forcings for land surface modeling. J. Clim. 
19, 3088–3111 (2006).

 48. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 
1. Geographic distribution of global agricultural lands in the year 2000. Glob. 
Biogeochem. Cycles 22, GB1003 (2008).

NATuRe CLiMATe ChANGe | www.nature.com/natureclimatechange

https://doi.org/10.6077/pfsd-0v93
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
http://www.nature.com/natureclimatechange


ArticlesNATurE CLimATE ChANgE

 49. Wood, A. W., Leung, L. R., Sridhar, V. & Lettenmaier, D. P. Hydrologic 
implications of dynamical and statistical approaches to downscaling climate 
model outputs. Climatic Change 62, 189–214 (2004).

 50. Li, H., Sheffield, J. & Wood, F. E. Bias correction of monthly precipitation and 
temperature fields from intergovernmental panel on climate change ar4 
models using equidistant quantile matching. J. Geophys. Res. 115,  
D10101 (2010).

 51. Maurer, E. P., Ficklin, D. L. & Wang, W. The impact of spatial scale in bias 
correction of climate model output for hydrologic impacts studies. Hydrol. 
Earth Syst. Sci. 20, 685–696 (2016).

 52. Panofsky, H. A. & Brier, G. W. Some Applications of Statistics to Meteorology 
(Pennsylvania State Univ., 1963).

 53. The climate data guide: NDVI: normalized difference vegetation index–third 
generation: NASA/GFSC GIMMS (National Center for Atmospheric 
Research, 2018); https://climatedataguide.ucar.edu/climate-data/
ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms

 54. Solon, G., Haider, S. J. & Wooldridge, J. M. What are we weighting for? J. 
Hum. Resour. 50, 301–316 (2015).

 55. Hausman, J. Mismeasured variables in econometric analysis: problems from 
the right and problems from the left. J. Econ. Perspect. 15, 57–67 (2001).

Acknowledgements
The authors thank C.B. Barrett and participants at the AERE and EAAE summer 
meetings, the Southern Economic Association meeting, the AGU Fall meeting, Giannini 
Foundation’s Big Ag Data Conference and seminars at Cornell University, Arizona State 
University, University of Arizona, North Carolina State University, Duke University, 

Michigan State University, University of Connecticut, Virginia Tech, UC Berkeley and 
Oregon State University and three anonymous referees for useful comments. A.O.B. was 
partially supported by the USDA National Institute of Food and Agriculture, Hatch/
Multi State project 1011555. T.R.A. and C.M.C. were partially supported by NSF grants 
1602564 and 1751535, as well as the Cornell Atkinson Center for Sustainability, the 
Cornell Initiative for Digital Agriculture and the Braudy Foundation.

Author contributions
A.O.B. conceived the study and conducted and led research and the writing of the 
manuscript. C.M.C. obtained and downscaled modelled climate data. T.R.A., R.G.C. 
and D.B.L. provided detailed guidance and advice throughout the project. All authors 
contributed to writing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41558-021-01000-1.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41558-021-01000-1.

Correspondence and requests for materials should be addressed to A.O.-B.

Peer review information Nature Climate Change thanks Keith Fuglie and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe CLiMATe ChANGe | www.nature.com/natureclimatechange

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://doi.org/10.1038/s41558-021-01000-1
https://doi.org/10.1038/s41558-021-01000-1
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange


Articles NATurE CLimATE ChANgE

Extended Data Fig. 1 | Composition of global agricultural production. Share of net production value of cereal crops, non-cereal crops and livestock. 
Source: FAOSTAT (http://www.fao.org/faostat/en/#data/QV, accessed 6/29/2020).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | The response of agricultural productivity to weather without 10% of coldest countries. a, Response function of changes in 
country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal effect is 
zero. The baseline response function with all countries is shown in dashed lines. The coloured bands represent 90 and 95% confidence bands based 
on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample period. The 
average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and weather data 
are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 reshuffled datasets. 
c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to changes in green-season 
total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The response of agricultural productivity to weather without 10% of hottest countries. a, Response function of changes in 
country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal effect is 
zero. The baseline response function with all countries is shown in dashed lines. The coloured bands represent 90 and 95% confidence bands based 
on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample period. The 
average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and weather data 
are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 reshuffled datasets. 
c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to changes in green-season 
total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | The response of agricultural productivity to weather for 1962–1988. a, Response function of changes in country-level TFP to 
changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal effect is zero. The baseline 
response function for 1962–2015 is shown in dashed lines. The coloured bands represent 90 and 95% confidence bands based on 500 year-by-region 
block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample period. The average green-season T is 
indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and weather data are randomly mismatched or 
reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 reshuffled datasets. c, Same as previous panel but 
based on datasets reshuffled by country. d, Response function of changes in country-level TFP to changes in green-season total P. e, Same as panel B but 
for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | The response of agricultural productivity to weather for 1989–2015. a, Response function of changes in country-level TFP to 
changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal effect is zero. The baseline 
response function for 1962–2015 is shown in dashed lines. The coloured bands represent 90 and 95% confidence bands based on 500 year-by-region 
block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample period. The average green-season T is 
indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and weather data are randomly mismatched or 
reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 reshuffled datasets. c, Same as previous panel but 
based on datasets reshuffled by country. d, Response function of chanfcentges in country-level TFP to changes in green-season total P. e, Same as panel B 
but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | The response of agricultural productivity to weather for 1962–1988 without 10% of coldest countries. a, Response function of 
changes in country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal 
effect is zero. The baseline response function with all countries and years is shown in dashed lines. The coloured bands represent 90 and 95% confidence 
bands based on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample 
period. The average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and 
weather data are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 
reshuffled datasets. c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to 
changes in green-season total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | The response of agricultural productivity to weather for 1989–2015 without 10% of coldest countries. a, Response function of 
changes in country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal 
effect is zero. The baseline response function with all countries and years is shown in dashed lines. The coloured bands represent 90 and 95% confidence 
bands based on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample 
period. The average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and 
weather data are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 
reshuffled datasets. c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to 
changes in green-season total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.

NATuRe CLiMATe ChANGe | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


ArticlesNATurE CLimATE ChANgE

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | The response of agricultural productivity to weather for 1962–1988 without 10% of hottest countries. a, Response function of 
changes in country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal 
effect is zero. The baseline response function with all countries and years is shown in dashed lines. The coloured bands represent 90 and 95% confidence 
bands based on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample 
period. The average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and 
weather data are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 
reshuffled datasets. c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to 
changes in green-season total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | The response of agricultural productivity to weather for 1989–2015 without 10% of hottest countries. a, Response function of 
changes in country-level TFP to changes in green-season average T. Response functions are centered vertically so that the exposure-weighted marginal 
effect is zero. The baseline response function with all countries and years is shown in dashed lines. The coloured bands represent 90 and 95% confidence 
bands based on 500 year-by-region block bootstraps. The blue bars represent the country-level distribution of green-season average T over the sample 
period. The average green-season T is indicated for a select number of large countries. b, Panel shows the result of a placebo check whereby TFP and 
weather data are randomly mismatched or reshuffled by years. The distribution represents the linear and quadratic T coefficients based on 10,000 
reshuffled datasets. c, Same as previous panel but based on datasets reshuffled by country. d, Response function of changes in country-level TFP to 
changes in green-season total P. e, Same as panel B but for P coefficients. f, Same as panel c but for P coefficients.
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Extended Data Fig. 10 | Global impact of anthropogenic climate change under a wide range of econometric models. The upper part of the figure shows 
the impact estimates for 298 model variations. The vertical lines around each estimate represent the 90 and 95% confidence intervals (in light and dark 
colour, respectively) around the ensemble mean estimate for a particular model. ACC impacts for the baseline model, also shown in Extended Data Fig. 
3a, is highlighted in blue whereas alternative models are shown in grey. The red horizontal line and band represent the average mean impact of the 288 
models out of the 298 that do not exclude observations, plus and minus a standard deviation (−16.9 ± 5.9%). The vertical bars directly below the impact 
estimates represent the reduction in out-of-sample MSE of a 10-fold cross-validation (whereby years of data are sampled together) relative to a model 
that excludes weather variables. Thus, higher bars indicate better model fit. The dotted table on the bottom part of the figure provides information about 
the characteristics of each econometric model shown in the upper part of the figure.
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